

To: Dr. Oman and GTA Amy Swartz From: Team 23 Clean Room Subject: Final Testing Date: 4/12/2019

Introduction

This memo outlines the final testing of the clean hood completed as a team Tuesday, April 9, 2019. The scope of the project has been changed to fully finishing the hood, fully designing the room, and manufacturing the frame of the room. The scope changed due to continuously exceeding the budget and time constraints. The final testing exhibits proof of every engineering requirement being met.

Assembled Hood

In Figure 1 below exhibits the final product, the fully assembled clean hood.

Figure 1: Fully Assembled Clean Hood

Area [< 0.743*m*²]

The area tested was the bottom surface area of the hood. The original surface area to be under was 0.557m², this was because the team had originally designed for a smaller clean hood, this was later revised to be larger per the client's needs. The total work surface area was calculated to be 0.754 m². This was calculated using the length values found in figure 2 and 3, and by converting from inches squared to meters squared.

Figure 2. Hood Width, 24.25in

Figure 3. Hood Length, 48.25in

Pressure [>78000 *Pa*]

Below are the assumptions and calculations made to estimate the output pressure at the bottom of the unit as seen in Figure 4 using fluid mechanics. As seen below, the output pressure is greater than atmospheric which means that positive pressure is induced.

Figure 4: 2'x4' Clean Hood

Assumptions

This section of the report contains assumptions, equations, and variables used in analyzing the fluid flow and the pressure within the room and the hood.

Assumptions

- 1. Incompressible flow, ρ = constant
- 2. Steady state, $\frac{\partial}{\partial t} = 0$
- 3. Mass flow rate in equals mass flow rate out, $\dot{m}_{in} = \dot{m}_{out}$
- 4. The FFU is treated as a pump, as one whole unit
- 5. The relative roughness is smooth
- 6. The polycarbonate case is to be treated as a duct

Equations

Equation 1: Mass flow rate

$$\dot{m} = \dot{\forall} * \rho$$

Equation 1 calculates the mass flow rate by multiplying the volumetric flow rate given which then allows the ability to obtain the velocity at various points.

Equation 2: Velocity

$$V = \frac{\dot{m}}{\rho * A}$$

The equation above can calculate the velocity by taking the calculated flow rate and dividing it by the density of air and the area with which the velocity is flowing through.

Equation 3: Hydraulic diameter

$$D_h = \frac{4Lw}{2(L+w)}$$

The equation above calculates the hydraulic diameter by using the 2 times the area divided by the perimeter of the unit which then will be applied to equation 4 below.

Equation 4: Head supply of pump

$$h_{SP} = \frac{W_{pump}}{\dot{m}\rho}$$

This equation calculates the head supply of the unit, by taking the power of the FFU and dividing it by the mass flow rate.

Equation 5: Reynold's number

$$Re = \frac{\rho VL}{\mu}$$

The Reynolds number is a dimensionless number, the calculation determines the type of flow that the FFU produces through the hood and room. If less than 2300 the flow is laminar and if the value is greater than 4000 the flow is turbulent.

Equation 6: Head loss major of unit

$$h_{lM} = f * \left(\frac{L}{D_h}\right) \left(\frac{V^2}{2}\right)$$

Equation 6 above calculates the major head loss that occurs through the hood and room.

Equation 7: Pipe flow energy equation

$$h_{lM} - h_{SP} = \left(\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1\right) - \left(\frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2\right)$$

Department of Mechanical Engineering

$$h_{lM2} + h_{lM3} = \left(\frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2\right) - \left(\frac{P_3}{\rho} + \frac{V_3^2}{2} + gz_3\right)$$

This equation is used to obtain the value of pressure 2 located 6" below the FFU and pressure 3 located at the bottom of the entire unit. This equation will show whether or not that either unit maintains a positive pressure throughout.

Nomenclature

 W_{pump} – Power at low setting[W][$\frac{kg * m^2}{s^3}$] h_{lM2} – Head loss Major of pump unit for 6" below FFU $\left[\frac{m^2}{s^2}\right]$ h_{lM3} – Head loss Major of pump for bottom of unit $\left[\frac{m^2}{s^2}\right]$ h_{SP} – Head supply of pump unit $\left[\frac{m^2}{s^2}\right]$ D_{h2} – Hydraulic Diameter for 6" below FFU [m] D_{h3} – Hydraulic Diameter for bottom of unit [m] $\dot{\forall}_{low}$ – Volumetric flow rate at low setting $\left[\frac{m^3}{2}\right]$ \dot{m}_{low} – Mass flow rate at low setting $\left[\frac{kg}{s}\right]$ h_{fan} – Height of fan unit [m] h_{hood} – Height of hood [m] h_{door} – Height of door [m] L - Length [m]w - width [m] $A - Area of unit [m^2]$ A_{pf} – Area of pre – filter [m^2] V_1 – Velocity at top of hood $\left[\frac{m}{s}\right]$ V_2 – Velocity located 6" below FFU [$\frac{m}{s}$] V_3 – Velocity at bottom of unit $\left[\frac{m}{s}\right]$ z_1 – Hight at point 1(top of fan) [m] z_2 – Hight at point 2(6" below fan) [m] z_3 – Hight at point 3(bottom of unit) [m] $g - Earth's gravity \left[\frac{m}{c^2}\right]$ $p_1 - Atmospheric \ pressure \ in \ Flagstaff \left[\frac{kg}{ms^2}\right]$ $p_2 - Pressure 6" below FFU \left[\frac{kg}{ms^2}\right]$ p_3 – Pressure at bottom of unit $\left[\frac{kg}{ms^2}\right]$

 $\begin{aligned} & Re - Reynolds \ number \\ & f_2 - Friction \ factor \ for \ 6" \ below \ FFU \\ & f_3 - Friction \ factor \ for \ bottom \ of \ unit \\ & \rho - Density \ of \ air \ in \ Flagstaff \ \left[\frac{kg}{m^3}\right] \\ & \mu - viscosity \ of \ air \ \left[\frac{kg}{ms}\right] \end{aligned}$

2'x4' Clean Hood

In this section is the calculations for the 2'x4' clean hood at the low speed setting. Listed below are the known variables.

$$W = 393 W \left[\frac{kgm^2}{s^3} \right]$$

$$\dot{\forall} = 0.3087 \frac{m^3}{s}$$

$$h_{hood} = 1.219 m$$

$$h_{fan} = 0.332m$$

$$h_{door} = 0.1524 m$$

$$L_2 = 0.1524 m$$

$$L_3 = 1.067 m$$

$$W = 0.6096 m$$

$$A_{pre-filter} = 0.2581 m^2$$

$$z_1 = 0 m$$

$$z_2 = 0.15837 m$$

$$z_3 = 1.067 m$$

$$\rho_{flagstaff} = 1.20 \frac{kg}{m^3}$$

$$p_{flagstaff} = 797156 \frac{kg}{ms^2}$$

$$V_2 = V_3 = 0.4724 \frac{m}{s}$$

$$\mu = 1.8x10^{-6} \frac{Ns}{m^2}$$

Listed below is the calculation process taken to prove that there is a positive pressure at the bottom of the unit.

$$\dot{m} = \dot{\forall}\rho = 0.3087 * 1.20 = 0.37044 \frac{kg}{s}$$
$$V_1 = \frac{\dot{m}}{\rho A_{pf}} = \frac{0.37044}{1.20 * 0.2581} = 1.1961 \frac{m}{s}$$

Department of Mechanical Engineering

$$h_{SP} = \frac{W_{pump}}{\dot{m}\rho} = \frac{393}{(0.37044)(1.20)} = 884.08\frac{m^2}{s^2}$$

$$Re = \frac{\rho VL}{\mu} = \frac{1.20 * 0.4724 * 0.15837}{1.8x10^{-6}} = 49876 > 2300 - Turbulent Flow$$

Reynold's number and assumption 5 are applied to the Moody's Diagram to estimate the friction factor. [2]

$$\begin{split} f_2 &\approx 0.037 \\ \\ D_{h2} &= \frac{2L_2 w}{L+w} = \frac{2 * 0.15837 * 0.6096}{0.15837 + 0.6096} = 0.25142 \, m \\ \\ h_{lM2} &= f_2 * \left(\frac{L}{D_{h2}}\right) \left(\frac{V_2^2}{2}\right) = 0.037 * \left(\frac{0.15837}{0.25142}\right) \left(\frac{0.4724^2}{2}\right) = 0.002601 \frac{m^2}{s^2} \\ \\ h_{IM} - h_{SP} &= \left(\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1\right) - \left(\frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2\right) \\ \\ \rightarrow 0.002601 - 884.08 = \left(\frac{79715.6}{1.20} + \frac{1.196^2}{2} + 0\right) - \left(\frac{P_2}{1.20} + \frac{0.4724^2}{2} + (9.81)(0.15837)\right) \\ \\ \rightarrow -884.08 = (66429.7 + 0.71521) - \left(\frac{P_2}{1.20} + 0.11158 - 1.5536\right) \\ \\ \rightarrow -884.08 = 66430.4 - \frac{P_2}{1.20} \\ \\ \rightarrow -884.08 = 66429 - \frac{P_2}{1.20} \\ \\ \Rightarrow -67313.1 = -\frac{P_2}{1.20} \\ \\ \Rightarrow P_2 = 80775.7 \, Pa \end{split}$$

With the pressure known at point 2, use same equations to find the pressure at point 3 which is the bottom of the unit.

$$Re = \frac{\rho VL}{\mu} = \frac{1.20 * 0.4724 * 1.067}{1.8x10^{-6}} = 336034 > 2300 - Turbulent Flow$$

Reynold's number and assumption 5 are applied to the Moody's Diagram to estimate the friction factor. [2]

$$f_3\approx 0.0235$$

$$D_{h3} = \frac{2L_3w}{L+w} = \frac{2*1.067*0.6096}{1.067+0.6096} = 0.77591 \, m$$

$$\begin{split} h_{lM3} &= f_3 * \left(\frac{L}{D_{h3}}\right) \left(\frac{V_2^2}{2}\right) = 0.0235 * \left(\frac{1.067}{0.77591}\right) \left(\frac{0.4724^2}{2}\right) = 0.005431 \frac{m^2}{s^2} \\ h_{lM2} + h_{lM3} &= \left(\frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2\right) - \left(\frac{P_3}{\rho} + \frac{V_3^2}{2} + gz_3\right) \end{split}$$

$$\rightarrow 0.002601 + 0.005431$$

$$= \left(\frac{80775.7}{1.20} + \frac{0.4724^2}{2} + (9.81)(0.15837)\right) - \left(\frac{P_3}{1.20} + \frac{0.4724^2}{2} - (9.81)(1.076)\right)$$

$$\rightarrow 0.008031 = (67313.1 + 0.11158 + 1.5536) - \left(\frac{P_3}{1.20} + 0.11158 - 10.556\right)$$

$$\rightarrow 0.008031 = 67314.7 - \frac{P_3}{1.20} + 10.444$$

$$\rightarrow 0.008031 = 67325.2 - \frac{P_3}{1.20}$$

$$\to -67325.2 = -\frac{P_3}{1.20}$$

$$P_3 = 80790.2$$
 Pa

Cost [< \$2000]

The cost was exceeded continuously throughout the design and manufacturing process. The budget originally started at \$1,000 and then was increased to \$2,000. Currently, the budget has no limit per the client's decision. The only remaining purchase is the powder coat for the room's steel frame.

Department of Mechanical Engineering

Table 1. B.O.M. Of Hood and Room

			Bill of Mater	erials				
			Clean Dream	n Team				
			Portable Hood					
art #	Part Name	Qty	Description Function	ons	Material	Dimensions	Cost	Total Cost
1	Aluminum Frame	6	Hood Frame DONATED -98C Support	orts Fan	Numinum	1"X 1/8" thick - 5 - 6' let	\$-	\$ -
	Welding Aluminum Frame	1	Welding of the aluminum frame		Auminum	length and 1 - 7' length	\$300	\$300
1	Polycarbonate	1	For 3 sheets Material For Hood Creates	es convering for hood	Polycarbonate	48"x48"x1/4"	\$530.00	\$530.00
4	Cut Polycarbonate	1	Cut the polycarbonate Is the in	inner shell of the hood	Polycarbonate	48"x48"x1/4"	\$240.00	\$240.00
	Epoxy	5	seals the polycarbonate creates	s a seal for no air to escape	Plastic	n/a	\$6.75	\$33.73
6	Rubber lining	1	cushions FFU to frame to preve	vent air leakage between frame and FFU	Rubber	19/32" X 10'	\$16.74	\$16.74
	Magnets	1	Holds door Keeps d	door open for ease of adjustments within hood	Neodymium	1/2 diam.	\$4.76	\$4.76
8	Machine Screws	1	tightens hinges secures	es the hinges	Zinc plated	32x1/2	\$3.54	\$3.54
9	Ardrino	1	Test Pressure within Unit To test	t Pressure within unit	N/A		\$36.89	\$36.89
10	Power Cord	1	Power the FFUs - 3 wire power tool replacement cord Power t	r the FFU	N/A		\$12.97	\$12.97
11	Interior L Brackets	4	Stainless Steel Brackets to support the polycarbonate support	rt :	Stainless steel		\$13.08	\$52.32
12	! Nuts	1	fasten the brackets to polycarbonate support	rt	Stainless steel		\$4.24	\$4.24
13	Handle	1	assist in opening door		steel		\$4.88	\$4.88
14	Hook	1	prop door up	1	steel		\$-	ş-
15	Screws	100	fasten the brackets to polycarbonate support	rt :	stainless steel		\$5.60	\$5.60
16	Hinges	1	hinges for hood allows t	the hood door to open	Zinc plated	2-1/2'	\$1.97	\$1.97
	1	_				Total Co	ost Estimate:	\$1,247.63
		-	Portable Room					
art #	Part Name	Oty	Description Function	ons	Material	Dimensions	Cost	Total Cost
10	Steel Frame and cutting	120	Steel - 110' - 1.5"x1.5"x1/8"' Framing	ng for the protable room	steel	1.5"x1.5"x1/8"`	\$435.78	\$435.78
12	White Powder Coat	120	Powder coat the steel frame Protect the steel	t the steel and to reduce particals released by eel	Powder coat		\$750.74	\$750.74
17	Power Cord	1	Power the FELIs - 3 wire power tool replacement cord	the FEU	N/A		\$12.97	\$12.97
15	Heavy Duty Swivel Caster Wh	4	600lb capacity swivel caster wheels - DONATED Allows f	for the nortable mom to be stationary and move	5 x 1-1/4 in ovion poly	Wheels - 5 x 1-1/4. Fran	\$-	¢-
						Total Co	ost Estimate:	\$1,199,49
						Overall To	tal Estimate:	\$2,447,12
								\$2,000.00
						Remai	ning Budget:	(\$447.12)

Weight [< 45.36 kg]

Figure 5 shows the overall estimated weight of the hood that was manufactured. This excludes the weight of the fan unit that will be resting on top. Figure 6 Shows the CAD assembly used to calculate the weight in figure 5.

Figure 6. Hood CAD used to Estimate System Weight

Assembly Time [< 10 min]

Figure 7 shows the recorded time for the complete assembly of the Hood along with the fan unit being plugged in and operational. Only 2 people were doing the assembly process and could assemble the hood in less than 2 minutes.

Figure 7. Hood Assembly Time

Power FFU [520 *W*]

Figure 8 below is from a label on the Fan Filter Unit, the label shows the power the fan outputs is 472 Watts.

Figure 8. Fan Unit Specifications

Particle Count [< 102,000 $per m^3$]

Figure 9 describes the steps taken to find the estimated number of foreign particles for the assumed ISO rating of Class 3. This calculation was done from cleanroom ISO classification

charts. Since the clean hood volume is less than one cubic meter it will have less foreign particles than what is listed in figure 9.

No. of FFU's = (Air C	hanges / hour	· ÷60) ×(Cu	hic feet in m	m +650+
	CFM output	t of a looded	FFU	
Calculations for Hoc Air changes fro Cubic feet in hoo	d 150 clas m 150 clas d → 2×4×3	s 3. s 3 → 36(s.33 = 26.66)-540 pe .H ³	er hour
No. of $FFU'_{5} = (\frac{360}{60}) \times ($	$\left(\frac{20.66}{650}\right) = 0$.246		
No. of FFU'S = (546) *	$\left(\frac{26.66}{650}\right) = 0.6$	369		
Total fan units	needed → I	> Class i	3 130 achie	evable
150 Clase 3				
Number of Par	tical per c	cubic meter	by microme	ter size
0.1 micron	0.2 micron	0.8 micron	0.5 micron	1 micron
1000	237	102	85	8

Figure 9. Analytical Solution to find Air Particles

Velocity FFU [> 0.58 $\frac{m}{s}$]

In Figure 10 below is from the Terra Universal's 2'x4' WhisperFlow FFU Manual and states the velocity of the FFU at each setting. On low the velocity is $0.472 \frac{m}{s}$, on Medium the velocity is $0.518 \frac{m}{s}$, and on High the velocity is $0.584 \frac{m}{s}$. Thus, the FFU meets the engineering requirement.

「たいないないか」	High Speed	Medium Speed	Low Speed
Run Amps	4.3	3.5	3.3
Watts	512	416	393
Start Amps	9.1	6.3	4.9
Air Speed (6" be	low filter face)	建设的 关系	
Flow (CFM)	808	717	654
Velocity (fpm)	115	102	93

Figure 10. Section of FFU Manual

Room Frame Testing:

The weight requirement for the steel frame is to hold up to 70lbs per side for a total of 140lbs. The test done by one of the group members and was to elevate the frame from the ground and add weight to see if there are any noticeable bending happening on the steel frame. The group

member weights 200lbs and the complete weight is on just one beam. This test will show that if one beam can withstand 200lbs it can hold 70lbs with no issues.

Figure 11. Weight Bearing Test